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Abstract. We examine the phase diagram of systems of hard, spherical p ~ c l e s  with a shofi- 
range amaction. Recent simulations as well as theoretical investigations predict for such systems 
an fcc-to-fcc isoskuctural uansition which terminates at a critical point, and the existence of a 
single fluid phase. We use a nonperturbative density functional approach. by making a mapping 
of the inhomogeneous system onto a uniform fluid by means of the modified weighted density 
approximation (MWDA). Previous approaches were instead based on the separation of the 
potential into a hard-sphere repulsion and a short-range amaction with the latter treated in a 
mean-field fashion. We obtain improved results for the uitical temperature, the middle density 
at the triple point and the overall shape of the phase diagram, but a worsening of the triple 
temperature with increasing range of interaction. 

1. Introduction 

Probably the best understood phase transition of classical fluids is the liquid-gas transition. 
The study of this phase change goes back to the pioneering work of van der Waals who 
demonstrated that there is no fundamental difference between a liquid and a gas: one phase 
can be continuously transformed into the other above the critical temperature Tc, and below 
T, the two phases are separated by a first-order phase transition. A fundamental requirement 
for such a transition to take place is the existence of an attractive part in the interparticle 
interaction in addition to the (core) repulsion. Systems interacting by means of purely 
repulsive potentials possess a single fluid phase, coexisting at high packing with a solid 
whose crystalline shvcture (i.e. fcc, bcc etc) depends on the steepness of the repulsion. 

Although necessary to cause a liquid-gas transition, the existence of an attractive part 
in the interparticle potential is not sufficient to produce such a phase change. Indeed, 
whether a given system will possess one 01 two fluid phases depends on the range of the 
attractive interaction. There is by now ample evidence for a variety of one- and two- 
component mixtures with a hard-core repulsion that, when the range of the attractive part 
becomes less than 25% of the hard-sphere diameter, the liquid-gas critical point becomes 
thermodynamically unstable because Tc drops below the triple temperature T, [ 1.21. On the 
other hand, recent simulations by Bolhuis etul [2,3] showed that if the range of the attractive 
potential is small enough (roughly speaking less than 7% of the hard-sphere diameter), there 
exist two fcc solidphases, separated by a line which terminates at a critical point. Solid-tw 
solid transitions between two solids of different crystal symmetry are quite common and they 
have been known for many years. However, this is an isostructurul transition between two 
solids that differ only in their thermodynamic density (lattice constant) and in that respect 
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it bears a close resemblance to the liquid-vapour transition, which can be thought of as its 
analogue for translationally invariant phases. This remarkable discovery, found to hold for 
two- as well as three-dimensional systems and for square well and attractive Yukawa-tail 
potentials 121, establishes a symmetry in the phase diagrams of simple systems: when the 
range of the attractive potential is sufficiently long, the phase diagram of the system consists 
of a single solid phase and two fluid ones. When it is short enough, there are two solid 
phases and a fluid one, whereas for intermediate values of the attractive range, only a single 
fluid and a single crystal phase occur. 

There has already been considerable theoretical effort to explain these simulation results. 
The qualitative characteristics of the phase diagram can readily be understood within the 
framework of the uncorrelated cell model 121. Moreover, Tejero et al have studied the same 
systems by means of a variational procedure based on the Gibbs-Bogoliubov inequality 
[4, 51, and Daanoun et al have presented an analytic van der Waals-type theory for solids 
[6] to manifest the symmetry between the fluid and solid coexistence regions of the system. 
Finally, a density functional treatment of the problem has recently been proposed by Lkos et 
al [7], where the interaction is split into a hard-sphere part, treated nonperturbatively using 
the modified weighted density approximation (MWDA) of Denton and Ashcroft [SI, and 
an attractive part which is treated in a mean-field fashion. This separation is necessary for 
systems displaying a phase diagram with a two-fluid-phase region [9], where the correlation 
functions of the fluid are not well-defined, and the mapping of the solid onto a fluid is then 
problematic. However, as mentioned above, systems with a short-range attractive interaction 
with which we are concerned here possess a single fluid phase, and such a mapping is 
possible for the correlntion part of the Helmholtz free energy, as we demonstrate below. 

The layout of this paper is as follows: in section 2 we describe the system and its fluid 
state properties (correlation functions and excess free energy). In section 3 we present the 
method that we use to describe the solid phases of the system, and to obtain the phase 
diagram. In section 4 we present our results and compare them with the ones from the 
mean-field treatment and from simulation. Finally, in section 5 we draw our conclusions. 

1 
Figure 1. Excess free energy per uNl volume against packing fraction for square well fluids, 
From bottom to mp: Sfo = 0.03. 0.02. 0.01. ail for reduced bmpenture t = 1.0. The solid 
c w e  is the f = m (hard-sphere) result, equation (2.11). 
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2. The system and its fluid phase properties 

Following Bolhuis et al we consider hard spheres with a square well attraction and take the 
interparticle interaction of the form 

00 o < r < a  
u(r)  = { ;& o c r c a + S  (2.1) 

r 2 a +S. 

In equation (2.1), a is the hard-sphere diameter, 6 the width of the attractive potential, 
and -E its depth (E > 0). We are going to deal exclusively with short-range potentials 
(6 5 0.050.). For such a case, there exists an analytic (yet approximate) solution of the 
Percus-Yevick closure for the direct correlation function of the fluid by Nezbeda [lo]. Here 
we reproduce the essential results of this work, and refer the reader to the original paper 
for details of the method. Defining x = rJa3 y = SJa and t = k s T / &  (where T is the 
temperature and k s  Boltzmann’s constant), the direct correlation function (dcf) c ( x )  is found 
to have the following form: 

1 
2 
1 
2 

-AIX - 6~h.2~’ - -hlx4 + 12qE(1 - E)A2(2y  - X ) X  

-AIX - 67&x2 - -h,x4 + 12qE(1 - E)A2y2 

o < x < r  

y < x c l  

1 < x <  l + y  

x c ( x )  = I ( E  - 1)[A + B(x - 1) + C(X - l)’] 

The parameters in equation (2.2) above are defined as follows: q = (n/6)po3 is the packing 
fraction ( p  = NJV is the number density of a system of N particles enclosed in volume 
V), and E = exp(l/t). The other parameters are calculated by solving algebraic equations 
as follows. Define 

a = (12q)*E(1 - E ) $  B = 12(1 - E ) y .  (2.3) 

Then, A is the smaller of the two roots of the quadratic equation: 

[ ~ v ’ B Y  - (1 - v)’IEvBYA’ + IV(1 - v)B - 3q2By - ( 1  - v)*IA 

The remaining parameters are determined from A through the expressions: 
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At low temperatures. there exists a region for the packing fraction for which the discriminant 
of the quadratic equation (2.4) is negative, and thus no real roots can be found. This 
observation has led Nezbeda to identify that domain with a two-phase liquid-gas coexistence 
region of the system [lo]. However, here we will be dealing with temperatures much higher 
than the ‘critical temperature’ of this ‘transition’ where real solutions of the quadratic 
equation always exist. Moreover, a loss of the solution does not conclusively show that 
a liquid-gas transition indeed takes place, and even if it does when one looks exclusively 
at the fluid phases, it might still be preempted by the solid gas transition and thus never 
materialize in practice. 

0.5 
0.8 1 1.2 1.4 

Pa3 
Figure 2. Phase d i m  of squve well systems obtained using the cMWDA, Fmm right to 
left S/a = 0.01, 0.02, 0.03. 0.04 and 0.05. The bell-shaped curves ar high densities give the 
coexistence between the two fcc solids. with a critical temperature which increases with 6. Each 
such curve continues on the left of the middle density into the solidus c w e  of the usual melting 
uansition. with the liquidus l i n s  being the leftmost set of c w e s .  The value of 6 to which the 
liquidus curyes cormpond can be identified by the triple tempemture, where the slope of the 
line has a bre&. For the last value of &/a the fcc-fcc uansition is just preempted by melting 
and thus it never materializes. 

From the direct correlation function c ( x ) .  the equation of state of the system is obtained 
by means of any of the energy, pressure or compressibility routes. For the MWDA which 
we will apply in this study, it is essential to satisfy the compressibility sum rule. Thus, 
we choose to obtain the excess free energy of the fluid by invoking this sum rule which 
relates the k = 0 value of the Fourier transform of the direct correlation function c(k) to 
the second density derivative of the excess free energy per unit volume, namely 

x 2  

6 ?(k =O; q)  = -(-) f”(q) 

where S ( k  = 0 q )  = c ( k  = 0 q ) / 0 3  and f(q)  = pFexc(q)a3/V with Fe&) being the 
excess Helmholtz free energy of a system having packing fraction q (,!I E ( k ~ T ) - l  from 
now on). We integrate numerically equation (2.9) under the initial conditions: 

f ( q  = 0) = 0 f‘(q = 0) = 0 (2.10) 

since both the excess free energy and chemical potential vanish in the ideal (q + 0) limit, 
to obtain the sought for excess free energy f ( q ) .  In figure 1 we show the excess free 
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energy of the fluid phase obtained by this procedure for various different values of S. By 
construction, f(u) reduces at t = CO to the ‘compressibility free energy’ f o (q )  obtained 
from the Percus-Yevick solution for hard spheres, namely 

(2.11) 

Knowing the properties of the uniform fluid, we can now use density functional theory to 
describe the solid phases and examine their thermodynamic stability. 

InlAtl 
Figure 3. Log-log plot of the deviation of the density from the critical value pc against 
the deviation of the temperature from the critical value tc. Here Appa3 = pa3 - pcc3 and 
At = t - 1,. S q u m  6/o = 0.01; aiangles 6/o = 0.02; circles: 6/o = 0.03. The straight 
lines have slopes eqwl to 0.5 * 0.02 indicating a value ,t3 = $ for the critical exponent. 

3. The solid phases 

The crystalline solid phases of the system are characterized by a position-dependent one- 
particle density p ( r ) .  We will therefore refer to the solid as an inhomogeneous (nonuniform) 
phase, and to the fluid as a homogeneous (uniform) one. According to the basic theorem 
of density functional theory 11 I], the Helmholtz free energy of the inhomogeneous system 
is a uniquefunctional of the one-particle density p ( r ) .  This has led to the development of 
a wide class of different approximations for the study of crystalline solids. Here, we shall 
adopt the modified weighted density approximation (MWDA) of Denton and Ashcroft 181, 
which is particularly simple in its implementation, and yet quite successful in its predictions 
for the freezing of systems characterized by short-range interactions [12]. The basic idea 
of the MWDA is to first separate the Helmholtz free energy of the solid into an ideal and 
an excess part: 

The ideal part is known exactly, i.e. 
FWl= Fid[pl+ F e x I ~ l .  (3.1) 

where A is the thermal de Broglie wavelength. On the other hand, the excess free energy 
is approximated by that of a uniform system evaluated at a weighted density 5,  namely 

BFe&l= NJG) (3.3) 
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with N the number of particles in the solid and f(p) the excess free energy per particle of 
a uniform system at density p. One may alternatively work with the excess free energy per 
unit volume f ( p )  = po ' f (p )  and use 
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(3.4) 

where ps = N / V  is the average density of a solid of N particles enclosed in volume V .  
The weighted density is uniquely specified for a given profile p(+) if the direct correlation 
function c(r)  and excess free energy f ( p )  of the uniform system are known [8]. For the 
density profile, we adopt the usual Gaussian parametrization: 

where ( R )  is the set of lattice vectors of the given Bravais lattice. Moreover, 01 is a 
localization parameter, and the limit 01 --t 0 will be taken to correspond to the uniform 
fluid, whereas the Gaussians become sharper as 01 grows. As a first attempt, we tried to 
carry out the MWDA mapping (3.3) for the full excess free energy of the solid. However, 
a problem appears at high solid densities and low temperatures: it turns out that the excess 
free energy of the solid can become a negative quantity. On the other hand, the excess free 
energy of the fluid is a nonnegative quantity, for all the values of rj and t that are of interest 
(see figure 1). Therefore, the mapping cannot always be made. To deal with this problem, 
we first point out that the negative contribution to the solid free energy is entirely due to 
the 'direct' or 'Hartree' interaction in the solid, defined as . ^ ^  

where 
\ 

1 < x <  l + y  
otherwise 

(3.6) 

(3.7) 

is the attractive part of the potential. Thus, we are led to a separation of the Helmholtz free 
energy of the form 

ml = + FdPI  + FJPl  (3.8) 
which defines the 'correlation' free energy F&]. We now employ an MWDA-type treatment 
only for the correlation term, i.e. we write, in analogy with equation (3.4), 

(3.9) 

where f,(p) is the correlation free energy per unit volume of the uniform system, related 
to its excess counterpart by 

From equations (3.1), (3.6). (3.8) and the definition of the direct correlation function 1111, 
it follows that 

(3.11) 
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By defining the ‘reduced’ direct correlation function cC(Ir - r‘l; p )  as minus /J times the 
left-hand side of (3.11) we obtain 

c d l r  - 4; P )  = c(lr - 4; P )  +@@(IT - ?-’I). (3.12) 

From equations (2.9), (3.9), (3.11) and (3.12) it follows that c,(k = 0 q )  and fc(q) are 
related by the ‘sum rule’ 

I T 2  

6 &@ = 0; q )  = -(-) f:” (3.13) 

consistently with equation (3.10). The determination of the weighted density ,i? appearing 
in equation (3.9) follows exactly the same steps as the ones in the original MWDA 181, 
but with the dcf replaced by its reduced counterpart, and the excess free energy by its 
correlation counterpart. Thus, after some trivial algebra, we find that within the Gaussian 
parametrization of the solid density, the weighted packing fraction i j  = (x/6),i?u3 is given 
by the self-consistency equation 

(3.14) 

where qr = (n/6)p,03 and (K} is the set of the reciprocal lattice vectors (TUVs) of the 
given lattice. Alternatively, it turns out to be useful to express the MWDA equation (3.14) 
in real space, where it reads 

Equation (3.15) is more convenient to use for large values of the localization parameter 01 

(@U’ > 100). Indeed, as the localization grows, one should include more and more stars of 
RLVs in the k space iteration (3.14) to ensure the convergence of the sum. However, due to 
the Gaussian form of the density, and the fact that c,(x) has a polynomial form, the integral 
in (3.15) can be carried out analytically, yielding combinations of powers, exponentials and 
error functions. Then, one obtains sums over real space stars of lattice vectors, and due to 
the short-range character of c,(x) one only needs to include the R = 0 and the nearest- 
neighbour contributions to achieve excellent accuracy. A similar treatment can be made for 
the Hartree term (3.6). There, the analytic expression obtained for FH is a lot simpler, and 
can be found in [5 ] .  

Table 1. The critical densities pc of the fcc-fcc transition predicted by simulation, cMWDA 
and MFA for different values of S .  

(PCU3)’ @<U31b @,a31C 

6fa = 0.01 1.374 1.372 1.377 
S / a  = 0.02 1.336 1.331 1.340 
810 =0.03 1.302 1,290 1.305 
a/fl = 0.04 1.267 1.251 1.272 

Simulation result (121). 
Result from the cMWDA. 
Result from the MFA. 
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Figure 4. Comparison belween simulatioo, cMWDA and MFA phase diagiams for square well 
systems. The solid lines ye the simulation result, the dotted lines the cMWDA wult, and 
the dash-domed lines the MFA-result. (a) Sfc = 0.01; (b) 810 = 0.M. (c) ale = 0.03, (d) 
S/u = 0.04. 
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Figure 4. (Continued) 

The total free energy of an fcc solid of density pr is obtained by minimizing the sum 
of the ideal, Hartree and correlation contributions with respect to the localization parameter 
(Y at fixed ps. Accordingly, denoting the number density of any phase, solid or liquid by 
p. we obtain for the Helmholtz free energies per unit volume of our system the following 
expressions: 

= min pu - p(r)[ln(p(r)a3) - I] dr 
El I w 

(3.16) 

for the solid and 

= pa3(ln(pa3) - 1) + fc (pa3)  - 2.(pa3))2[(l + y ) 3  - I] + 3pu3 In(A/u) 
3t 

(3.17) 

for the liquid. The phase diagram is determined by performing the common tangent 
construction on the solid and liquid free energy curves. In practice the last term in (3.16) 
and (3.17) is ignored, as it does not affect the location of the phase boundaries. We will 
refer to this theory as the correlation MWDA (cMWDA). 

In order to provide a comparison, we are also going to trace out the phase diagram 
obtained by treating the system in the mean field approximation (MFA), presented in 
detail in [7]. The MFA is equivalent to replacing the correlation free energy f (p)  by 
the hard-sphere excess free energy, and the reduced correlation function c,(x) by the hard- 
sphere direct correlation function, in all the expressions of this section. To assess the 
effects of treating the attractive part of the interparticle potential beyond mean-field, we 
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should compare cMDWA and MFA predictions obtained using liquid inputs of the same 
quality, In [7], the CarnahanStarling equation of state [ 131, and the associated Verlet-Weis 
parametrization [I41 of the direct correlation function were used. Therefore, we recalculate 
here the MFA phase diagram by using, for the mapping of the solid into an effective liquid, 
the 'compressibility' Percus-Yevick excess free energy fo(p) (2.1 1) and the PY dcf CO(X) 

for the hard spheres. (The latter is easily obtained as the t = 00 or y = 0 limit of the 
expressions in section 2.) For the liquid free energy f i iq(p) ,  however, we still use in the 
MFA the more accurate CarnahanStarling equation, namely 

C N Likos and G Senatore 

(3.18) 

The results from both approaches and the comparison with the simulations are presented in 
the following section. 

4. Results and discussion 

The phase diagrams obtained using the cMWDA approach are reported in figure 2. We find 
that there exists a region where two fcc solid phases are separated by a first-order transition 
region, the region shrinking to a critical point as the temperature is raised, in qualitative 
agreement with the findings of simulations 174. This isostructural transition occurs for values 
S/u 5 0.05; for larger values of this parameter it is preempted by melting. Moreover, we 
have also calculated the critical exponent ,3 for the solid-solid transition, finding once more 
the classical value p = 5 (see figure 3.) 

Table 2. The critical temperatures 1, of the fcc-fcc vansition predicted by simulation, cMWDA 
and MFA for different values of 6, 

(ksT4E)' (ks Z/E)b  (ka TCIdc  

&/a = 0.01 1.736 1.945 2.386 
&/a = 0.02 1,736 2.021 2377 
S/a = 0.03 1.736 2.100 2,372 
610 =O.M 1.739 2.186 2.370 

r.b.c same as in table I 

Table 3. ?he viple temperatures I, of the fluid-fw-fcc coexistence predicted by simulation, 
cMWDA and hlFA for different values of 6. 

(ksTt /E)' (ks T, /E)b ( k s  Tc Is)' 

6 fa  = 0.01 0.769 0.800 0.778 
6/a = 0.02 0.980 1.221 1.031 

ala =O.W 1.361 1.935 1.496 
8/a = 0.03 1.163 1.576 1.268 

Same as in table 1, 

A comparison between simulation, cMWDA and MFA results is presented in figures 
4(a)-(d), and the critical densities as well as critical and triple temperatures from theory 
and simulation are summarized in tables 1-3. The following remarks can be made. First, 
the critical density is rather insensitive to the particular approximation used, and always in 
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good agreement with simulation (see table 1). Further, the cMWDA yields better critical 
temperatures for the fcc-fcc transition as compared with the MFA, which overestimates tc 
by about 37% for all values of 6/a. This effect is expected, since in the new theory 
the correlations between the particles are taken into account in a more accurate way. 
Nevertheless, the cMWDA still overestimates the critical temperatures by amounts ranging 
from 12% to 26% depending on the value of the width of the potential (see table 2.) 
Moreover, the shape of the liquid-fcc coexistence curves (the freezing transition) is better in 
the new theory: both the liquidus and solidus curves have negative slopes with temperature, 
whereas in the MFA these curves are almost vertical, with the liquidus curve having slightly 
positive, and the solidus curve slightly negative slopes. The width of the liquid-solid 
coexistence region is significantly overestimated by the present theory, though. This effect 
can be understood by noting that this width is largely determined by that of the pure hard- 
sphere coexistence region, which is the f = CO limit of the liquidus and solidus curves. 
Indeed, for this purely entropic transition, which essentially drives the freezing transition 
of the system at all temperatures, the MWDA coexistence densities for PY input for both 
the liquid and solid phases are p p 3  = 0.877 and psa3 = 1.018, to be compared with 
ma3 = 0.940 and p . p 3  = 1.040 from simulations 1151. 

At first sight, the new theory appears to be worse than the MFA in two respects. First, 
the triple temperature t, is overestimated with respect to the simulation (see table 3). with the 
discrepancy between theory and simulation becoming sizeable at larger values of S/a. The 
MFA also overestimates tr, albeit by a smaller amount. Further, the critical temperature tc 
shows a significant dependence on the width of the attractive potential, whereas in both the 
simulation result and in the MFA tc turns out to be quite insensitive to 6 ,  being essentially 
constant. It is not immediateIy clear at present whether these discrepancies, which increase 
with 8, are due to structural deficiency of the theory itself, or they are consequences of 
the quality of the liquid state input used in the procedure of mapping the fcc solids onto 
effective liquids. Nevertheless, a few remarks can he made regarding the possible effects 
of this liquid input. 

From an immediate comparison between the present MFA results and those obtained 
in [7], where an improved liquid state input was used for the pure hard spheres but the 
theory was identical otherwise, it can be seen that this input has a significant effect on the 
estimation of the critical temperature. Indeed, tc was found to be equal to about 2.01 before 
[7], whereas now it turns out to be roughly 2.37, an increase of 18% that can be attributed 
entirely to the liquid state input. Regarding the PY input for the full interaction, there are 
two factors to be taken into account. First, the analytic solution of Nezbeda [lo] is itself 
approximate. based on an expansion in powers of y up to O(y2)  of the direct correlation 
function c ( x )  in the interval 1 < x < 1 + y .  The quality of this expansion is bound to get 
worse as y increases. In fact, in the original paper [lo] results only for values y g 0.01 are 
reported, whereas we took here Nezbeda’s solution for y as large as 0.05. Second, even 
the exact PY solution (obtained by numerically solving the PY equations) has been found 
to be inaccurate [ 161 for y = 0.5. Thii is of course a value much larger than the ones we 
consider here, but it would be consistent with a worsening of the PY results as y grows 
from zero to higher values. 

In this respect, it is interesting to point out that the cMWDA results for the solid-solid 
transition are in satisfactory agreement with simulation at the smallest value of y ,  y = 0.01. 
and worsen systematically as y grows. It is worth considering, therefore, alternative routes 
to obtain a more reliable liquid state input, such as the mean spherical approximation 
for example which has been found to give much better results for large y [16], or some 
alternative approaches 1171. 
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5. Conclosions 

We have presented a density functional approach to study the phase diagram of square 
well systems with a short-range attraction. So far, the MWDA as well as most of the 
other approximate density functional schemes have been applied to the freezing in systems 
interacting by means of simple inverse power potentials. In these cases, the ‘phase diagram’ 
consists of just two coexistence densities. On the other hand, in this application the 
phase diagram is fairly complicated, displaying a nontrivial temperature and interaction 
dependence, as well as the exciting phenomenon of an isostructural transition. The success 
of the MWDA io reproducing (at least qualitatively) the simulation results suggests that 
the theory is capable of dealing with such more complicated situations. However, the lack 
of a reliable liquid input does not allow at present a definitive assessment of merits and 
limitations of the MDWA approach. A study of the square well fluid is therefore called for 
to determine correlation functions and excess free energies of high accuracy, for short-range 
attraction, say 0.01 < y < 0.05. Only then will it be possible to settle the issue of the 
quality of MWDA as well as of any other liquid-based density functional scheme that one 
might want to apply to this system. 

Acknowledgments 

We thank Peter Bolhuis for sending us the simulation results, and Zsolt Nkmeth for helpful 
discussions. CNL has been supported by the Human Capital and Mobility Programme of 
the Commission of the European Communities, contract No ERBCHBICT940940. 

C N Likos and G Senatore 

Nore odded in proof. During the production of this paper. we becnmc aware of mother theoretical approach to the 
problem by Rascdn erol 1181. 

References 

[l] Uett S M, O m c k  A, Poon W C K and Pusey P N 1995 Phys. Rev. E 51 1344 
[21 Bolhuis P. Hagen M and Frenkel D 1994 Phys. Rev. E 50 4880 and references therein 
[31 Bolhuis P and Frenkel D 1994 Phys. Rev. Len. 72 2221 
L41 Tejero C F, Daanoun A, Lekkerkerker H N W and Baus M 1994 Phys. Rev. Len. 73 752 
[SI Tejem C F. D m o u n  A, Lemerlterker H N W and Baus M 1995 Phys. Rev. E 51 558 
I61 Daanoun A. Tejem C F and Bnus M 1994 Phys Rev. E 50 2913 
[7] Likm C N, Nemelh Zr T and Mwen H 1994 3, Phys.: Condenr. M m m  6 10965 
[81 Denton A R and Ashcroft N W 1989 Phys. Rev, A 39 4701 
[9] Curtin W A and Ashcroft N W 1986 Phys. Rev. Len. 56 2775 
[IO] Nezbeda I 1977 Czch J.  Phys. B 27 247 
[I I ]  Evans R 1979 Adv. Phys. 28 143; 1992 FuundmenruLr of Inhomogcncous Fluid3 ed D Henderson (New York. 

[I21 Haymet A D J 1992 FundumntaLr ofinhomogeneous Fluid? ed D Henderson (New York: D&ker) ch IO 
[I31 Camahan N F and Stnrling K E 1969 J. Chem. Phyr. 51 635 
[I41 Verlel Land Weis I I 1972 Phyr. Rev. A 45 939 
[I51 Hwver W G and R e  F H 1968 J.  Ckm Phyr. 49 3609 

Dckker) ch 3 

The same values are found in lhe high-tempemre limit of lhe simulations reported in [Z] (Bolhuis P Private 
communication). 

[I61 Smith W R. Henderson D and Tag0 Y 1977 J.  Chem Phys. 67 5308 
[I71 For a discussion on lhe quality of various liquid state theories for systems wilh an acuactive interaction. see 

[18] Rasc6n C. Navasques G and Mederos L 1995 Phyr. Rev. B 51 14899 
Hamen I P and MacDonald I R 1986 Tkov of Simple Liquids 2nd edn (New York. Academic) chs 5.6 


